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Resonance energy transfers in the induction phenomenon in quartic Fermi-Pasta-Ulam chains

G. Christie and B. I. Henry
Department of Applied Mathematics, University of New South Wales, Sydney, New South Wales 2052, Australia

~Received 25 February 1998; revised manuscript received 20 April 1998!

We have reexamined the induction phenomenon in quartic Fermi-Pasta-Ulam chains whereby an initially
excited harmonic mode transfers energy apparently abruptly to other harmonic modes after the elapse of an
initial induction time. The previous explanation for this phenomenon using the Mathieu function stability
analysis is shown to be unsatisfactory. An analysis using a shifted frequency perturbation scheme and the
analysis of mode resonances correctly identifies the initial pattern of mode excitation and the dominant modes
in the induction phenomenon.@S1063-651X~98!04009-4#

PACS number~s!: 05.45.1b, 63.70.1h, 63.90.1t
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I. INTRODUCTION

The Fermi-Pasta-Ulam~FPU! chain @1# of N equimass
particles coupled by linear and nonlinear nearest-neigh
forces is a paradigm for studying fundamental problems
the foundations of statistical mechanics such as ergod
and equipartition of energy in solids@2#. In the absence o
the nonlinear forces the chain dynamics is equivalent to a
of independent linear oscillators, each with different fr
quency ~harmonic modes!. The central focus of studies o
FPU chains has been the distribution of the system ene
among the harmonic modes. Phase space averages fo
linear chain yield equipartition of energy: equal energy co
tent in each harmonic mode. On the other hand, since the
no coupling between the harmonic modes in a linear ch
time averages simply yield the initial energy distributio
among the modes that is not uniform for generic initial co
ditions.

With the inclusion of nonlinear forces the harmon
modes can redistribute energy among themselves; howe
calculations of phase space averages and time average
generally algebraically intractable and comparisons betw
the two require numerical simulations. Early numerical stu
ies of the FPU model revealed two contrasting behaviors
the original computer experiments of Fermi, Pasta, Tsing
and Ulam @1# energy was initially supplied to the lowes
frequency harmonic mode. The energy did not become
formly distributed among the other harmonic modes of
system but instead varied periodically~the FPU period!. In a
subsequent experiment by Ooyama, Hirooka, and Saitoˆ @3#
~see also@4,5#! energy was initially supplied to a high
frequency harmonic mode~mode 11! in a FPU chain with 15
movings particles. In this study it was reported that abov
threshold value of the nonlinear coupling parameter the
ergy remained in the initially excited mode over an init
induction time before it was abruptly transferred to oth
harmonic modes.

The results of these and other numerical studies of F
chains have been explained qualitatively by appealing to
Kolmogorov-Arnol’d-Moser~KAM ! theorem@2#. For suffi-
ciently small nonlinear coupling~small in the sense that th
nonlinear energy in the chain is small compared to the lin
energy in the chain! the KAM theorem asserts that pha
space trajectories for almost all initial conditions will be co
PRE 581063-651X/98/58~3!/3045~10!/$15.00
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strained to lie onN-dimensional tori rather than be free t
wander over the full (2N21)-dimensional energy surface
As the nonlinear coupling is increased the tori are destro
so that an increasing fraction of the energy surface is ac
sible. For sufficiently large nonlinear coupling all tori a
destroyed and the phase space trajectory will wander fre
over the energy surface.

Quantitative algebraic results for the above numerical
periments rely on a detailed analysis of the coupling betw
the harmonic modes together with the employment of per
bation methods. This program has been carried out m
comprehensively in the case where energy is initially s
plied to the lowest-frequency harmonic mode. Here accu
estimates have been obtained for FPU periods and also
FPU superperiods using a shifted frequency perturba
analysis@6,7#. The most comprehensive algebraic study
the induction phenomenon to date is that of Saitoˆ, Hirotomi,
and Ichimura@4# based on a Mathieu function stability anal
sis. We are not aware of any previous algebraic studies of
induction time.

In this paper we have reexamined the induction pheno
enon in quartic FPU chains. We show that estimates for
onset of induction based on Mathieu function stability ana
sis, while correctly reproducing the exponential growth
the mode energies, does not correctly identify the domin
modes. An analysis using a shifted frequency perturba
scheme and the analysis of mode resonances is prese
This analysis provides good agreement with numerical sim
lations for the pattern of mode excitation and for the iden
fication of the dominant modes in the induction proce
However, the analysis does not explain the exponen
growth of mode energies.

In Sec. II the model Hamiltonian and the equations
motion for the quartic FPU chain are presented. In Sec.
the explanation for the induction phenomenon using
Mathieu function stability analysis is reviewed and compa
with numerical results. The shifted frequency perturbat
analysis is presented in Sec. IV. The possibility of reduct
of order due to near resonances is examined in Sec. V for
N515 particle chain. It is found that the first such reducti
of order is due to a near resonance between the initi
excited mode 11 and modes 9 and 13. Modes 9 and 13
also found to be the dominant modes in numerical simu
tions of the induction phenomenon in theN515 particle
3045 © 1998 The American Physical Society
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3046 PRE 58G. CHRISTIE AND B. I. HENRY
chain. A generic near resonance in the induction phen
enon in quartic chains of lengthN is identified in Sec. VI.
Numerical simulations reveal that the modes involved in
generic near resonance are the dominant modes in the in
tion process. The paper concludes with a summary and
cussion in Sec. VII.

II. QUARTIC FPU CHAIN: MODEL EQUATIONS

The Hamiltonian for a quartic FPU chain with fixed en
andN free moving particles is

H5
1

2(
n51

N

~ ẋn!21
1

2(
n50

N

~xn112xn!21
b

4 (
n50

N

~xn112xn!4,

~2.1!

wherexi denotes the amplitudes of thei th particle from its
equilibrium position,x05xN1150, andb is the nonlinear
coupling parameter. It is convenient to introduce norm
mode coordinates

qs~ t !5A 2

N11(
n51

N

xn~ t !sinS nps

N11D , s51,2, . . . ,N

~2.2!

and

vs52 sinS ps

2~N11! D ~2.3!

so that the Hamiltonian can be rewritten as

H5
1

2(
s51

N

~ q̇s
21vs

2qs
2!

1
b

8~N11!(s51

N

(
s851

N

(
s951

N

(
s-51

N

As,s8,s9,s-qsqs8qs9qs-,

~2.4!

where

As,s8,s9,s-5vsvs8vs9vs-@B~s1s81s91s-!

1B~s2s81s91s-!1B~s1s82s91s-!

1B~s1s81s92s-!1B~s2s82s91s-!

1B~s2s81s92s-!1B~s1s82s92s-!

1B~s2s82s92s-!# ~2.5!

and

B~r !5H 1 for r 50

21 for r 562~N11!

0 otherwise.

~2.6!

In the normal mode representation~2.4!, the harmonic
Hamiltonian (b50) is a sum ofN independent harmonic
oscillators with amplitudesqs and frequenciesvs . The nor-
-

e
uc-
is-

l

mal mode representation of the FPU Hamiltonian,~2.4! is
thus a convenient form for perturbation studies withb as the
perturbation parameter.

The equation of motion for modes of a quartic FPU chain
is

q̈s52vs
2qs2

b

2~N11! (
s851

N

(
s951

N

(
s-51

N

@As,s8,s9,s-qs8qs9qs-#

~2.7!

or, equivalently,

q̈s52vs
2qs2

b

2~N11!Fqs
3As,s,s,s13qs

2 (
s851

N

8As,s,s,s8qs8

13qs (
s851

N

8 (
s951

N

8As,s,s8,s9qs8qs9

1 (
s851

N

8 (
s951

N

8 (
s-51

N

8As,s8,s9,s-qs8qs9qs-G , ~2.8!

where the primes on the summation signs in Eq.~2.8! indi-
cate that the summations do not include the indexs. It
readily follows from Eq. ~2.8! that an initially quiescent
modes may become excited by modess8,s9,s- ~not neces-
sarily all distinct! provided the amplitudes of these modes
nonzero and the coefficientAs,s8,s9,s- is nonzero. This is an
example of a mode selection rule. The full list of nonze
coefficients As,s8,s9,s- for the quartic FPU chain withN
515 moving particles and two end particles held fixed
tabulated in@5#. A complete account of mode selection rul
for quartic FPU chains has been presented in@8#.

III. INDUCTION PHENOMENON

The induction phenomenon was reported@3# in a numeri-
cal study of a quartic FPU chain withN515 free particles
and two end particles held fixed. In this study energy w
initially supplied to modes511 via the initial conditions

qs~0!5H 2 for s511

0 for sÞ11
~3.1!

and

q̇s~0!50 for all s. ~3.2!

Simulations were carried out over a range of values of
nonlinear couplingb and energy was found to remain esse
tially in the initially excited mode until after the elapse of a
induction time when it was transferred abruptly to the oth
~odd! modes of the system. It follows from the selectio
rules@8# that the even modes cannot be excited by the ini
excitation of an odd mode.

An explanation for the induction phenomenon was sub
quently provided in@4#. This explanation was based on a
analysis of the mode selection rules leading to a reduced
of decoupled linear mode equations@9#

q̈s52vs
2qs2

3b

16
vs

2v11
2 qsq11

2 , ~3.3!



da

all

le

e
th

o
t
th

y
this

be-
cal
not
c-

be

e
e

on,

ple

at-

xi-

age
uc-
e
two
the

and
that

the
e is
-

re
ial
d to

s a
toff
ate
ns,

the
of
rgy

fre-

is
E

ar

ic

PRE 58 3047RESONANCE ENERGY TRANSFERS IN THE INDUCTION . . .
with q11 approximated by the harmonic solution 2 cos(v11t).
This reduced set was transformed into the canonical form
Mathieu’s equation

qs91@as12es cos~2t!#qs50 ~3.4!

by defining

t5v11, ~3.5!

as5S vs

v11
D 2

1
3bvs

2

8
, ~3.6!

es5
3bvs

2

16
. ~3.7!

The stability of the modes was then deduced using stan
results for Mathieu’s equation@10#. In particular, the solu-
tions of Mathieu’s equation are unstable for

12es2
1

8
es

21O~es
3!<as<11es2

1

8
es

21O~es
3!,

~3.8!

42
1

12
es

21O~es
3!<as<41

5

12
es

21O~es
3!. ~3.9!

The stability of a given mode can be determined graphic
by using Eqs.~3.6! and~3.7! to plot as versuses for ~i! each
modes with b arbitrary and~ii ! fixed b but arbitrary mode
s. If the intersection of these two lines lies in the stab
~unstable! regime as determined by Eqs.~3.8! and~3.9!, then
modes is deemed to be stable~unstable! for the fixed value
of b ~see Fig. 1!. It was concluded that the energy of th
unstable modes would grow most rapidly and trigger
transfer of energy to other modes. As evidence in favor
this analysis, Saitoˆ, Hirotomi, and Ichimura reported tha
mode 9 was the first to obtain energy comparable to

FIG. 1. Mode stability based on the Mathieu function analys
The stable and unstable regions are demarked by thick lines,
~3.8!. The dashed lines are stability lines for the modes at arbitr
b and the solid lines are stability lines for a givenb but arbitrary
mode. The stability of a mode is determined by the region in wh
the stability lines intersect.
of
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y

e
f

e

initially excited mode forb50.5 and mode 9 was the onl
mode deemed to be unstable in the stability analysis for
value ofb.

We have carried out a comprehensive comparison
tween predictions of the stability analysis and numeri
simulations and we find that the stability analysis does
correctly identify the dominant modes involved in the indu
tion process over the range ofbP@0.1,1.0#. The main pre-
dictions of the stability analysis within this range may
summarized as follows~see Fig. 1!: ~i! For 0.1,b,0.17, all
modes are stable;~ii ! for 0.17,b<0.5, all modes are stabl
except for mode 9;~iii ! for 0.5,b,1.0, all modes are stabl
except for mode 7.

In extensive numerical simulations over a range ofb we
have numerically integrated the particle equations of moti
with initial conditions from Eqs.~3.1! and~3.2!, and we have
made plots of the mode energy versus time. Some sam
plots are shown in Figs. 2, 3, and 4 forb50.15, 0.3, and 0.7.
The results of the numerical simulations reveal uniform p
terns of behavior across a range ofbP@0.1,1.0# as follows.

~i! In the early part of the simulations~Fig. 2! the energy
in the modes is ordered

E11.E1.E9.E13.E3.E7.E15.E5 . ~3.10!

~ii ! The energy in mode 1 and mode 11 remains appro
mately constant until the onset of induction.~iii ! The energy
in all modes except mode 1 and mode 11 grows on aver
at an approximately exponential rate until the onset of ind
tion ~Fig. 3!. ~iv! After the first ten or so model time units th
energy in modes 9 and 13 is comparable and these
modes are the first modes to attain energy comparable to
initially excited mode~Fig. 4!. ~v! The induction time in-
creases with decreasingb ~Fig. 4!.

IV. SHIFTED FREQUENCY ANALYSIS

The discrepancies between the theoretical predictions
the numerical simulations in the preceding section reveal
the reduced set of decoupled linear mode equations~3.3! do
not adequately describe the dynamics of the modes in
induction phenomenon. One of the reasons for this failur
that the approximation of Eq.~3.3! is not a consistent trun
cation of the mode equations. In particular, Eq.~3.3! includes
some of the multinomial terms of the formqsq11

2 that are
permitted by the selection rules but omits others. A mo
complete set of equations including all such multinom
terms would not be decoupled and could not be reduce
Mathieu equations.

The shifted frequency perturbation scheme provide
consistent truncation of the mode equations up to a cu
order. We have employed this scheme here to investig
energy sharing in the full set of coupled mode equatio
~2.7! for the (1512)-particle chain initially excited in mode
11. This scheme, which is essentially a generalization of
Poincare´-Lindstedt method to systems with many degrees
freedom, has been used previously to explain periodic ene
exchanges in FPU chains@11–14,6,7#. In this scheme it is
assumed that the mode amplitudes as well as the mode
quencies can be formally expanded as power series inb.
These expansions are written

.
q.
y

h
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3048 PRE 58G. CHRISTIE AND B. I. HENRY
qs5qs,01bqs,11b2qs,21¯, ~4.1!

vs
25Vs

22bms,12b2ms,22¯, ~4.2!

whereV are the shifted frequencies of the oscillators andm
are the frequency shifts. In the standard shifted-freque
perturbation scheme the mode-amplitude expansions are
stituted into the equations of motion~2.7! and the frequency
expansions are substituted into the linear terms in this eq
tion. The coefficients of equal powers ofb are then equated
in the resultant equations. This yieldsN equations of motion
~one for each mode! at each ordern of the form

qs,n1Vs
2qs,n5F (

p51

n

ms,pqs,n2pG2Fn21, ~4.3!

FIG. 2. Plots of the logarithm of the mode energy versus time
the early part of the simulation for three different values ofb: ~a!
b50.15, ~b! b50.3, and~c! b50.7.
y
ub-

a-

where the forcing term Fn21 comprises all the
(n21)th-order terms inside the square brackets on the rig
hand side of Eq.~2.7!. The forcing term is zero unless th
following conditions are met:

As,s8,s9,s-qs8qs9qs-Þ0, ~4.4!

qs8qs9qs-5O~n21!. ~4.5!

The resultant equations with initial conditions

q11,0~0!52, ~4.6!

qs,0~0!50 ; sÞ11, ~4.7!

qs, j~0!50 ; s, ; j >1, ~4.8!

q̇s, j~0!50 ; s, j ~4.9!

n
FIG. 3. Plots of the logarithm of the mode energy versus ti

for times up to the onset of induction for three different values ofb:
~a! b50.15, ~b! b50.3, and~c! b50.7. Note the different time
scale in the plots.
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PRE 58 3049RESONANCE ENERGY TRANSFERS IN THE INDUCTION . . .
can be solved explicitly by proceeding order by order up t
cutoff order. The frequency shifts are defined so as to
move secular terms from the solutions.

The zeroth order equations are

q̈s,01Vs
2qs,050, ~4.10!

with solutions

q11,052 cos~V11t !, ~4.11!

qs,050 ; sÞ11. ~4.12!

The dual requirement thatAs,s8,s9,s- is nonzero and
qs8qs9qs- is a nonzero term of order zero only permits for
ing terms in the first-order equations for modess51 via

FIG. 4. Plots of the mode energy versus time for times exte
ing beyond the induction time for three different values ofb: ~a!
b50.15, ~b! b50.3, and~c! b50.7. Note the different time scal
in the plots.
a
-

A1,11,11,11q11,0
3 Þ0 ~4.13!

ands511 via

A11,11,11,11q11,0
3 Þ0. ~4.14!

Thus mode 1 is the only additional mode to become exc
at this order. The first-order equations can be written in
form

q̈11,11V11
2 q11,15S 2m11,12

9

16
v11

4 D cos~V11t !

2
3

16
v11

4 cos~3V11t !, ~4.15!

q̈1,11V1
2q1,15

3

16
v1v11

3 cos~V11t !1
1

16
v1v11

3 cos~3V11t !,

~4.16!

q̈s,11Vs
2qs,150, s53,5,7,9,13,15. ~4.17!

Equation~4.15! contains a resonance term that would lead
secular terms in the solution. This secular term is elimina
by defining the frequency shift

m11,15
9

32
v11

4 . ~4.18!

No other frequency shifts are defined at this order. It is
simple matter to obtain solutions to Eqs.~4.15!–~4.17! sub-
ject to the initial conditions~4.6!–~4.9!. Explicitly,

q1,15
v1v11

3

4 F ~7V11
2 2V1

2!cos~V1t !1S 3

4
V1

22
27

4
V11

2 D
3cos~V11t !1S 1

4
V1

22
1

4
V11

2 D cos~3V11t !G
3~V1

4210V1
2V11

2 19V11
4 !21, ~4.19!

q11,15
3v11

2

128V11
2 @cos~v11t !1cos~3v11t !#, ~4.20!

qs,150 for s53,5,7,9,13,15. ~4.21!

At second order, the dual requirement thatAs,s8,s9,s- is
nonzero andqs8qs9qs- is a nonzero term of order one onl
permits forcing terms in the equations for modess51,9,11
via

A1,11,11,11q11,0q11,0q11,1Þ0, ~4.22!

A1,11,11,1q11,0q11,0q1,1Þ0, ~4.23!

A9,1,11,11q1,1q11,0q11,0Þ0, ~4.24!

A11,11,11,11q11,0q11,0q11,1Þ0, ~4.25!

A11,11,11,1q11,0q11,0q1,1Þ0. ~4.26!

-
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TABLE I. All the nonvanishing forcing terms in the mode equations of motion for the newly excited mode at each order in the
frequency perturbation treatment~see Sec. IV!.

First order Second order Third order Fourth order Fifth order Sixth order Seventh ord

A1,11,11,11 A9,11,11,1 A13,11,1,1 A3,11,11,13 A7,11,1,13 A15,11,1,3 A5,11,9,3

q11,0q11,0q11,0 q11,0q11,0q1,1 q11,0q1,1q1,1 q11,0q11,0q13,3 q11,0q1,1q13,3 q11,0q1,1q3,4 q11,0q9,2q3,4

A13,11,11,9 A3,1,1,1 A7,11,11,3 A15,1,1,13 A5,9,9,9

q11,0q11,0q9,2 q1,1q1,1q1,1 q11,0q11,0q3,4 q1,1q1,1q13,3 q9,2q9,2q9,2

A3,11,1,9 A7,11,9,9 A15,1,9,9 A5,1,1,3

q11,0q1,1q9,2 q11,0q9,2q9,2 q1,1q9,2q9,2 q1,1q1,1q3,4

A7,1,1,9 A15,11,9,13 A5,1,9,13

q1,1q1,1q9,2 q11,0q9,2q13,3 q1,1q9,2q13,3

A5,11,13,13

q11,0q13,3q13,3
a
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Thus mode 9 is the only additional mode to be excited
second order.

At each order one new mode becomes excited unti
seventh order all odd modes are active. Table I lists all n
vanishing forcing terms in the equations of motion for t
newly excited mode at each order. The order of appeara
of the remaining modes is mode 13 at third order, mode
fourth order, mode 7 at fifth order, mode 15 at sixth ord
and finally mode 5 at seventh order. This order of appeara
of the modes in the shifted-frequency perturbation sche
matches precisely with the ordering of the modes accord
to mode energy in the early part of the numerical simulatio
~see Fig. 2!.

In general, the equation of motion for modes at order j
> j * (s) @where j * (s) is the order at which modes becomes
excited# may be written in the form

q̈s, j1Vs
2qs, j5 (

k51

j

ms,kqs, j 2k1(
l

a l~s, j !cos@n l~s, j !t#,

~4.27!

where then l(s, j ) are linear combinations of the shifted fre
quenciesV and the number of terms in the sum overl de-
pends on the modes and the orderj . In the particular case
j 5 j * (s), the mode amplitudesqs, j 2k50 and the solution of
Eq. ~4.27! corresponding to initial conditions~4.6!–~4.9! is

qs, j* 5(
l

a l~s, j * !

Vs
22n l

2~s, j * !
@cosn l~s, j * !t2cosVst#.

~4.28!

At the next orderj 5 j * 11, the equation of motion for mod
s is

q̈s, j* 111Vs
2qs, j* 115ms,1qs, j* 1F j* . ~4.29!

At this order the governing equation always contains a fo
ing term via

As,s,11,11qs, j* q11,0q11,0Þ0. ~4.30!
t

t
-

ce
at
,
ce
e
g
s

-

This particular forcing term has a resonance component s

q11,0
2 5212 cos~2V11t !. ~4.31!

Excluding the cases511, the resonance term is removed
defining

ms,15
3b

~N11!
As,s,11,11, ~4.32!

where the further factor 3 is obtained from the three perm
tations of the forcing@Eq. ~4.30!# arising from the sum in Eq.
~2.7!. Finally, using Eqs.~2.5! and ~2.6! with N511, the
first-order frequency shifts for all modes other than the i
tially excited mode@see Eq.~4.18!# are obtained:

ms,15H 3vs
2v11

2 /8 for sÞ5,11

3v5
2v11

2 /16 fors55.
~4.33!

It is not possible to explicitly obtain higher-order frequen
corrections for all modes without first obtaining explicit s
lutions to the mode equations at orderj * . We have obtained
explicit solutions up to second order. The only addition
frequency shift to be resolved up to this order is

m11,252
27v11

8

8192V11
2

1
123v11

6 v1
2V11

2

512V1
425120V1

2V11
2 14608V11

4

2
15v11

6 v1
2V1

2

512V1
425120V1

2V11
2 14608V11

4
. ~4.34!

V. RESONANCE MECHANISM IN INDUCTION: N515

It can be readily seen from Eq.~4.28! that the dominant
contribution to an initially excited mode comes from ne
resonances

Vs'n l~s, j * !. ~5.1!
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In particular, if Vs
22n l

2(s, j * )'O(bn) then this reduces
modes to order j * 2n. The importance of the reduction o
order via near resonances in mode energy sharing
pointed out by Ford and Waters@13# in a shifted frequency
analysis of the FPU period. The first reduction of order in
induction phenomenon occurs for mode 13 at third ord
From the entries in Table I it can be seen that one of
contributions to the forcing term in the equation for mode
at third order has frequency

n52V112V9 . ~5.2!

This term results in a near resonance since

V11'~V91V13!/2. ~5.3!

Other near resonances occur, but at higher orders. For
ample, the primary near resonance responsible for the F
period in the quartic chain is between modes 1 and 3. T
near resonance occurs at second order in the shifted
quency analysis of the FPU period@7# but at fourth order in
the shifted frequency analysis with initial conditions for i
duction; cf. Table I.

The near resonance resulting in the growth of mode 1
third order also appears in the equation for mode 9 at fou
order via

A9,11,11,13q11,0q11,0q13,3Þ0. ~5.4!

This near resonance would be expected to be dominant in
induction process over a range ofb for which

2V112V92V13<O~b3!. ~5.5!

Ideally, we would like to be able to calculate the frequen
corrections up to third order~where this near resonance fir
appears in the mode equations!; however, the rapid escala
tion of terms in the perturbation series has prevented us f
going beyond first order in the frequency corrections exc
for modes511 @Eq. ~4.34!#. At zeroth order the harmonic
frequencies yield

2V112V92V13'0.068, ~5.6!

whereas the shifted frequencies with first-order correcti
yield an exact resonance forb'0.154. Whether or no
higher-order corrections yield an exact resonance or a
resonance is not vital to the analysis since the solutions
the mode energies with exact resonances are similar to
solutions with near resonances over time scalest
,2p/@(2V112V9)2V13#. Thus, over these times we an
ticipate that the solution forq13(t) will contain a~near! secu-
lar term ;t sin(V13t) at third order and the solution fo
q9(t) will contain a ~near! secular term;t sin(V13t) at
fourth order. The associated mode energies resulting f
these~near! resonance terms can grow rapidly in time d
pending on the closeness of the near resonance. This
nance analysis suggests that modes 9 and 13 will pla
dominant role in energy transfers precipitating the induct
phenomenon. In numerical experiments of the induction p
nomenon in theN515 particle chain over a range ofb
P@0.1,1# it is observed that~apart from the initially excited
mode! modes 9 and 13 are always the dominant mod
as
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Hence the resonance mechanism correctly identifies
dominant modes, but it does not explain the exponen
growth of energy in these modes that is observed in num
cal simulations.

VI. GENERIC RESONANCE MECHANISM
IN INDUCTION: ARBITRARY N

In the N515 particle chain the induction phenomenon
characterized by~i! a stable exchange of energy between
initially excited mode, mode 11, and the lowest frequen
mode, mode 1, and~ii ! an unstable exchange of energy b
tween modes 11, 9, and 13. In the early part of simulatio
the energy is orderedE11.E1.E9.E13. Induction then
takes place whenE11'E9'E13, which is greater than the
energy in all other modes. The initial transfer of energy fro
mode 11 to mode 1 is an immediate consequence of
selection rules. The ordering of mode energies in the e
part of simulations was explained in the above using
mode selection rules and perturbation analysis. The simu
neous growth of energy in modes 9 and 13 as the domin
growing modes in the induction process was then explai
on the basis of a near resonance between modes 11, 9
13.

In this section we hypothesize generic conditions for
duction involving a generic resonance in chains of arbitr
length N. The condition that the initially excited modes0
first excites mode 1 is met if

s06s06s0615H 62~N11!

0,
~6.1!

which implies either

s0
15

2~N11!11

3
~6.2!

or

s0
25

2~N11!21

3
, ~6.3!

provided s0 is an integer. At second order in a shifte
frequency perturbation analysis a further mode can then
excited via

As2 ,s0 ,s0,1qs0,0qs0,0q1,1Þ0. ~6.4!

It follows from Eqs.~2.5! and ~2.6! that

s25H s012 if s05s0
2

s022 if s05s0
1 .

~6.5!

At third order modes3 can be excited via

As3 ,s0 ,s0 ,s2
qs0,0qs0,0qs2,2Þ0. ~6.6!

It follows from Eqs.~2.5!, ~2.6!, and~6.5! that

s35H s022 if s05s0
2

s012 if s05s0
1 .

~6.7!
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TABLE II. Dominant modes according to the generic resonance mechanism in the induction pheno
~see Sec. VI! for chains of different lengthN. Also shown is the zeroth-order approximation of the closen
of the near resonance, Eq.~6.11!.

N 7 9 10 12 13 15 16 18 19

s0 5 7 7 9 9 11 11 13 13
s2 7 5 9 7 11 9 13 11 15
s3 3 9 5 11 7 13 9 15 11
DV 0.25 0.17 0.14 0.10 0.085 0.068 0.057 0.050 0.04
to
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Sinces2 ands3 are ~odd! modes with frequencies closest
and on either side of the initially excited modes0 it is an-
ticipated that there will be a generic near resonance ari
from

2Vs0
'Vs2

1Vs3
. ~6.8!

Thus we have generic conditions for induction. Note th
near resonance terms will be ubiquitous in quartic chains
to interactions arising from nonvanishing coefficients of t
form As22,s,s,s12. In general, these resonances will occur
higher orders in the perturbation analysis. If these near re
nances are sufficiently close then they too will lead to lar
scale energy sharing.

In summary, if a quartic chain ofN particles is initially
excited in modes0 according to Eqs.~6.2! and~6.3! then this
will in turn first excite mode 1~at first order in a shifted
frequency perturbation treatment!. The two modess0 ands1
will subsequently excite the two odd frequency modes w

FIG. 5. Plots of the logarithm of the mode energy versus ti
for an N515 particle chain initially excited in mode~a! s059 and
~b! s0513, with b50.7.
g

t
e

t
o-
-

h

frequencies closest to the initially excited mode at seco
order@Eq. ~6.5!# and third order@Eq. ~6.7!#. The equation of
motion for modes3 at third order will contain a near reso
nance term with frequency

2Vs0
2Vs2

. ~6.9!

A similar near resonance term with frequency

2Vs0
2Vs3

~6.10!

will then appear in the equation of motion for modes2 at
fourth order. If the near resonance is sufficiently close th
this will lead to the growth of modess2 ands3 resulting in
induction.

According to the generic mechanism for induction d
scribed above, induction cannot occur in chains withN
53n12 particles (n is any natural number! and induction
cannot occur in a chain withN,7. Table II contains a list of

e
FIG. 6. Plots of~a! the logarithm of the mode energy versu

time in the early part of a simulation and~b! the mode energy
versus time over a full simulation for anN516 particle chain ini-
tially excited in modes0511 with b50.7.
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modess0 ,s2 ,s3 involved in the onset of induction accordin
to the generic mechanism forN57,9, . . . ,19. Thequantity

DV52vs0
2vs2

2vs3
~6.11!

is also listed in Table II as a zeroth-order measure of
closeness of the near resonance.

We have carried out extensive numerical simulations
the quartic chain with differentN and excited in different
initial modes and the results are consistent with the gen
mechanism for induction outlined above. Some of the res
of the numerical simulations are shown in Figs. 5–8. In th
simulations we have set the nonlinear coupling tob50.7 and
the initial conditions are of the formqs(0)50 and q̇s(0)
50 for all modes except modes0, whereqs0

(0)52.
Figure 5 shows plots of the mode energies in a 15-part

chain initially excited in~a! mode 9 and~b! mode 13. The
characteristic features of induction, an initial quiescent
riod followed by an abrupt transfer of energy to other mod
is not seen in either of these simulations~see further remarks
below!. Figure 6 shows plots of the mode energies in a
particle quartic chain initially excited in mode 11. In th
early part of the simulation the energy is orderedE11.E1
.E13.E9 , in agreement with the ordering predicted by t
selection rules and perturbation analysis as summarize
Table II. Furthermore, modes 11, 9, and 13 are the domin
modes at the onset of induction in this system, in agreem
with the resonance mechanism for induction. Figure 7 sho
a plot of the mode energies in a 10-particle quartic ch

FIG. 7. Plots of~a! the logarithm of the mode energy versu
time in the early part of a simulation and~b! the mode energy
versus time over a full simulation for anN510 particle chain ini-
tially excited in modes057 with b50.7.
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initially excited in mode 7. The orderingE7.E1.E9.E5 in
the early part of the simulation and the dominance of mo
7, 9, and 5 at the onset of induction are consistent with
entries in Table II and the resonance mechanism for ind
tion. Figure 8 shows induction in a 19-particle chain initial
excited in mode 13. Again, the initial orderingE13.E1
.E15.E11 and the dominance of modes 13, 15, and 11
the onset of induction are consistent with the entries in Ta
II and the resonance mechanism.

The shortest quartic chain for which we could numerica
obtain induction with the initial conditions above is the (N
510)-particle chain excited in mode 7~Fig. 7!. In particular,
we did not observe induction in the (N59)-particle chain
excited in mode 7 or the (N57)-particle chain excited in
mode 5. One possible reason for this is that the near re
nances involving modes 7, 5, and 9 in the (N59)-particle
chain and modes 5, 7, and 3 in the (N57)-particle chain are
not sufficiently close. Note that the closeness of the n
resonance decreases with decreasingN, at least in the zeroth
order approximation~Table II!. Another possibility is that
induction occurs but at much later times in these sh
chains. All of the numerical results that we have repor
above have been restricted to times less than the tim
which roundoff errors~as evidenced by the appearance
even modes! contaminate the results. It is possible to elim
nate the spurious excitation of the even modes by integra
the particle equations of motion under the explicit restricti
that xn5xN112n and ẋn5 ẋN112n , but this does not elimi-
nate the possibility of roundoff errors. It is interesting to no
in this connection that an apparent induction can be obse

FIG. 8. Plots of~a! the logarithm of the mode energy versu
time in the early part of a simulation and~b! the mode energy
versus time over a full simulation for anN519 particle chain ini-
tially excited in modes0513 with b50.7.
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in numerical simulations of the 15-particle chain initially e
cited in mode 9 forb51.5 and initial conditionsqs(0)50
and q̇s(0)50 for all modes exceptq9(0)52. However, this
apparent induction occurs as a result of significant growth
energy in the spurious mode 10. When we integrate the s
system but with even modes set to zero no induction is
served even over much longer times. For the 15-part
chain initially excited in mode 9 we do expect widespre
energy sharing forb sufficiently large, but we do not expec
this energy sharing to follow the induction pattern of an i
tially quiescent period followed by abrupt energy sharing

VII. SUMMARY AND DISCUSSION

In this paper we have reexamined the induction pheno
enon in quartic Fermi-Pasta-Ulam chains that occurs w
an initially excited mode transfers energy apparen
abruptly to the other modes of the system after an initia
quiescent induction time. This phenomenon has been stu
extensively in previous work in the case of a
(N515)-particle chain initially excited in mode 11. Th
simulations of our present study demonstrate that the con
sions of the previous workers relating to the mechanism
induction are not correct. The Mathieu function stabil
analysis in previous work that was based on a reduced s
coupled mode equations was flawed because the reduce
did not include all of the significant mode interactions.

We carried out a shifted-frequency perturbation analy
of the quartic 15-particle chain with the initial conditions f
induction and we found that the order of appearance of
modes in the perturbation analysis is consistent with the
dering of the modes according to the magnitude of their h
monic energies in the early part of simulations. We a
identified a resonance mechanism to account for the do
nant growing modes in the induction phenomenon. Fina
bo
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u-
r

of
set

is

e
r-
r-
o
i-
,

we identified a generic mechanism for induction in quar
FPU chains. In this generic mechanism an initially excit
mode first excites mode 1 and then excites the two mo
with frequencies closest to that of the initially excited mo
~at second order and third order in the perturbation analys!.
One of these modes has frequency less than the initially
cited mode and the other has frequency greater than the
tially excited mode. A near resonance term appears in
equations for these modes due to the fact that the freque
of the initially excited mode is essentially an average of
frequencies of these two neighboring modes. If the near re
nance is sufficiently close then the energy in the neighbor
modes can become comparable to the initially excited m
thus triggering induction.

The calculations in this study again support the usefuln
of the shifted-frequency perturbation scheme for study
mode energy transfers in FPU chains. There are, howe
several questions that we have not been able to ans
within this framework. Why is the energy in mode 1 stab
under the conditions for induction?@It follows from Eq.
~4.19! that at short times the energy in mode 1 does
depend on the perturbation parameterb.# Why is the energy
exchange between modes sometimes periodic and some
stochastic after the onset of induction? Why do all mo
energies~except mode 1 and the initially excited mode! grow
exponentially in time in the induction phenomenon? Can
stability analysis be carried out on the mode energies~per-
haps along the lines of a Mathieu function analysis gene
ized to coupled oscillators! on a reduced set of equations th
includes all significant mode interactions?
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