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Resonance energy transfers in the induction phenomenon in quartic Fermi-Pasta-Ulam chains
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We have reexamined the induction phenomenon in quartic Fermi-Pasta-Ulam chains whereby an initially
excited harmonic mode transfers energy apparently abruptly to other harmonic modes after the elapse of an
initial induction time. The previous explanation for this phenomenon using the Mathieu function stability
analysis is shown to be unsatisfactory. An analysis using a shifted frequency perturbation scheme and the
analysis of mode resonances correctly identifies the initial pattern of mode excitation and the dominant modes
in the induction phenomenofS1063-651X98)04009-4

PACS numbsgs): 05.45+b, 63.70+h, 63.90-+t

I. INTRODUCTION strained to lie onN-dimensional tori rather than be free to
wander over the full (RI—1)-dimensional energy surface.
The Fermi-Pasta-UlantFPU) chain [1] of N equimass As the nonlinear coupling is increased the tori are destroyed
particles coupled by linear and nonlinear nearest-neighbaso that an increasing fraction of the energy surface is acces-
forces is a paradigm for studying fundamental problems irsible. For sufficiently large nonlinear coupling all tori are
the foundations of statistical mechanics such as ergodicitgestroyed and the phase space trajectory will wander freely
and equipartition of energy in solid2]. In the absence of over the energy surface.
the nonlinear forces the chain dynamics is equivalent to a set Quantitative algebraic results for the above numerical ex-
of independent linear oscillators, each with different fre-periments rely on a detailed analysis of the coupling between
guency (harmonic modes The central focus of studies of the harmonic modes together with the employment of pertur-
FPU chains has been the distribution of the system energlyation methods. This program has been carried out most
among the harmonic modes. Phase space averages for tbemprehensively in the case where energy is initially sup-
linear chain yield equipartition of energy: equal energy con-plied to the lowest-frequency harmonic mode. Here accurate
tent in each harmonic mode. On the other hand, since there &stimates have been obtained for FPU periods and also for
no coupling between the harmonic modes in a linear chainkFPU superperiods using a shifted frequency perturbation
time averages simply yield the initial energy distribution analysis[6,7]. The most comprehensive algebraic study of
among the modes that is not uniform for generic initial con-the induction phenomenon to date is that of Satitwotomi,
ditions. and Ichimurd 4] based on a Mathieu function stability analy-
With the inclusion of nonlinear forces the harmonic sis. We are not aware of any previous algebraic studies of the
modes can redistribute energy among themselves; howevdnduction time.
calculations of phase space averages and time averages areln this paper we have reexamined the induction phenom-
generally algebraically intractable and comparisons betweeanon in quartic FPU chains. We show that estimates for the
the two require numerical simulations. Early numerical stud-onset of induction based on Mathieu function stability analy-
ies of the FPU model revealed two contrasting behaviors. Isis, while correctly reproducing the exponential growth of
the original computer experiments of Fermi, Pasta, Tsingouthe mode energies, does not correctly identify the dominant
and Ulam[1] energy was initially supplied to the lowest- modes. An analysis using a shifted frequency perturbation
frequency harmonic mode. The energy did not become unischeme and the analysis of mode resonances is presented.
formly distributed among the other harmonic modes of theThis analysis provides good agreement with numerical simu-
system but instead varied periodicafthe FPU periofl Ina  lations for the pattern of mode excitation and for the identi-
subsequent experiment by Ooyama, Hirooka, and $&ito fication of the dominant modes in the induction process.
(see also[4,5]) energy was initially supplied to a high- However, the analysis does not explain the exponential
frequency harmonic modgnode 1) in a FPU chain with 15 growth of mode energies.
movings patrticles. In this study it was reported that above a In Sec. Il the model Hamiltonian and the equations of
threshold value of the nonlinear coupling parameter the enmotion for the quartic FPU chain are presented. In Sec. llI
ergy remained in the initially excited mode over an initial the explanation for the induction phenomenon using the
induction time before it was abruptly transferred to otherMathieu function stability analysis is reviewed and compared
harmonic modes. with numerical results. The shifted frequency perturbation
The results of these and other numerical studies of FPlnalysis is presented in Sec. IV. The possibility of reduction
chains have been explained qualitatively by appealing to thef order due to near resonances is examined in Sec. V for the
Kolmogorov-Arnol'd-Moser(KAM ) theorem[2]. For suffi-  N=15 particle chain. It is found that the first such reduction
ciently small nonlinear couplingsmall in the sense that the of order is due to a near resonance between the initially
nonlinear energy in the chain is small compared to the lineaexcited mode 11 and modes 9 and 13. Modes 9 and 13 are
energy in the chajnthe KAM theorem asserts that phase also found to be the dominant modes in numerical simula-
space trajectories for almost all initial conditions will be con-tions of the induction phenomenon in tid=15 particle
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chain. A generic near resonance in the induction phenommal mode representation of the FPU Hamiltonigh4) is
enon in quartic chains of lengtN is identified in Sec. VI. thus a convenient form for perturbation studies wgtlas the
Numerical simulations reveal that the modes involved in theperturbation parameter.

generic near resonance are the dominant modes in the induc- The equation of motion for modeof a quartic FPU chain
tion process. The paper concludes with a summary and diss

cussion in Sec. VII.

N N N
E 2 2 [As,s’,s”,s”'qs’qs”qs"’]

Il. QUARTIC FPU CHAIN: MODEL EQUATIONS s~ ~ s 2(N+ D=1 9216721
The Hamiltonian for a quartic FPU chain with fixed ends @7
andN free moving patrticles is or, equivalently,
N B N ) 8 N
2 (Xp)2+ E (Xp41—Xp) 2+ ano (Xns1— X% s= ~ ®30s— 2(N+1) oA s 5,51 303 E Ass,ss' s’
(2.1 NN
wherex; denotes the amplitudes of thith particle from its +3q82 / Z Asss,50s Osr

equilibrium position,xq=Xxy;1=0, and B is the nonlinear

=1 1
coupling parameter. It is convenient to introduce normal NN N
mode coordinates + 22 Y Asy vl Qe |, (2.9

s=12,...N where the primes on the summation signs in E48) indi-

cate that the summations do not include the indexit
(2.2 readily follows from Eg.(2.8) that an initially quiescent
modes may become excited by modse§s”,s” (not neces-
and sarily all distinc) provided the amplitudes of these modes is
nonzero and the coefficierts o ¢ ¢» iS Nonzero. This is an

TS
wWg= 2 SII'( m

_ 2 EN: nms
qs(t)= NF12, Xp(t)sin —— NT1

(2.3

coefficients A ¢/ o o for the quartic FPU chain witiN

example of a mode selection rule. The full list of nonzero

=15 moving particles and two end particles held fixed is

so that the Hamiltonian can be rewritten as tabulated if5]. A complete account of mode selection rules
for quartic FPU chains has been presentefBin

= —2 (43 + w3q?) IIl. INDUCTION PHENOMENON
s N N N N The induction phenomenon was reporf&{lin a numeri-
N Ol cal study of a quartic FPU chain witN=15 free particles
8(N+1)521 321 Sgl Szl ss'.s",s"0sls Qs and two end particles held fixed. In this study energy was
2.4 initially supplied to modes=11 via the initial conditions
where 2 fors=11
aG0=15 for s#11 @D
AS'SI'SNYS//IZ Q)SU)SIC()S//C()S///[B(S+ S’ +S”+Sm) and
+B(S_SI+S!/+S///)+B(S+S/_SII+SIH) .
gs(0)=0 for all s. (3.2

+B(s+s'+s"—-s")+B(s—s'—s"+5")

Simulations were carried out over a range of values of the

+B(s—s'+8"—5")+B(s+s'—s"—s")
+B(s—s' —s'—s")] (2.5 tiallyinthe initially excited mode until after the elapse of an

nonlinear coupling3 and energy was found to remain essen-

induction time when it was transferred abruptly to the other

and (odd modes of the system. It follows from the selection

rules[8] that the even modes cannot be excited by the initial

1 forr=0 excitation of an odd mode.

An explanation for the induction phenomenon was subse-

B(r)={ —1 forr==2(N+1) (2.6)  quently provided in4]. This explanation was based on an

0 otherwise. analysis of the mode selection rules leading to a reduced set

of decoupled linear mode equatiofsy
In the normal mode representatiof2.4), the harmonic
Hamiltonian (3=0) is a sum ofN independent harmonic o2 38 , 3.3
oscillators with amplitudess and frequencies),. The nor- Gs= 7 @s0s™ 76 s S0 1105011, '
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B=0:17 p=0.5

initially excited mode for8=0.5 and mode 9 was the only
mode deemed to be unstable in the stability analysis for this
value of 8.

We have carried out a comprehensive comparison be-
tween predictions of the stability analysis and numerical
simulations and we find that the stability analysis does not
correctly identify the dominant modes involved in the induc-
tion process over the range gfc[0.1,1.9. The main pre-
dictions of the stability analysis within this range may be

T = summarized as followssee Fig. 1 (i) For 0.1< 3<0.17, all
‘ T modes are stabléii) for 0.17<8<0.5, all modes are stable
;—;:Z::Zi:--""”" except for mode Siii ) for 0.5<3< 1.0, all modes are stable
STABLE except for mode 7.
In extensive numerical simulations over a range3ofve
€ ' ‘ ' have numerically integrated the particle equations of motion,
with initial conditions from Egs(3.1) and(3.2), and we have
FIG. 1. Mode stability based on the Mathieu function analysis.made plots of the mode energy versus time. Some sample
The stable and unstable regions are demarked by thick lines, E‘ﬂ)lots are shown in Figs. 2, 3, and 4 f8,=0.15, 0.3, and 0.7.
(3.8). The dashed lines are stability lines for the modes at arbitraryrhe results of the numerical simulations reveal uniform pat-
B and the solid lines are stability lines for a giv@nbut arbitrary terns of behavior across a range®&[0.1,1.q as follows.
mode. The stability of a mode is determined by the region in which (i) In the early part of the simulatior(Ei,g. J) the energy
the stability lines intersect. in the modes is ordered

with g1, approximated by the harmonic solution 2 cogf).
This reduced set was transformed into the canonical form of
Mathieu’s equation

(i) The energy in mode 1 and mode 11 remains approxi-

q.+[as+2es c0g27)]qs=0 (3.4) mately constant until the onset of inductidii) The energy
in all modes except mode 1 and mode 11 grows on average
by defining at an approximately exponential rate until the onset of induc-
tion (Fig. 3). (iv) After the first ten or so model time units the
T=w11, (3.5 energy in modes 9 and 13 is comparable and these two

modes are the first modes to attain energy comparable to the

g |2 3,3w§ initially ex<_:ited mode_(Fig. _4). (v) The induction time in-
a;=|— , (3.6 creases with decreasing (Fig. 4).
w11 8
3Bw? 57 IV. SHIFTED FREQUENCY ANALYSIS
7716 ' The discrepancies between the theoretical predictions and

the numerical simulations in the preceding section reveal that

The Stability of the modes was then deduced using standaﬁqd,e reduced set of decoup|ed linear mode equa]ﬂ@r& do
results for Mathieu's equatiofL0]. In particular, the solu- not adequately describe the dynamics of the modes in the
tions of Mathieu’s equation are unstable for induction phenomenon. One of the reasons for this failure is

that the approximation of Ed3.3) is not a consistent trun-

cation of the mode equations. In particular, E3) includes

some of the multinomial terms of the formpg?, that are
(3.8 permitted by the selection rules but omits others. A more
complete set of equations including all such multinomial
terms would not be decoupled and could not be reduced to
Mathieu equations.

The shifted frequency perturbation scheme provides a
The stability of a given mode can be determined graphicallyconsistent truncation of the mode equations up to a cutoff
by using Eqs(3.6) and(3.7) to plot ag versuseg for (i) each  order. We have employed this scheme here to investigate
modes with 8 arbitrary and(ii) fixed 8 but arbitrary mode energy sharing in the full set of coupled mode equations,
s. If the intersection of these two lines lies in the stable(2.7) for the (15+ 2)-particle chain initially excited in mode
(unstablg regime as determined by Ed8.8) and(3.9), then  11. This scheme, which is essentially a generalization of the
modes is deemed to be stablenstablé for the fixed value PoincarelLindstedt method to systems with many degrees of
of B (see Fig. 1 It was concluded that the energy of the freedom, has been used previously to explain periodic energy
unstable modes would grow most rapidly and trigger theexchanges in FPU chaif41-14,6,7. In this scheme it is
transfer of energy to other modes. As evidence in favor ofaissumed that the mode amplitudes as well as the mode fre-
this analysis, SaitoHirotomi, and Ichimura reported that quencies can be formally expanded as power serie8.in
mode 9 was the first to obtain energy comparable to thdhese expansions are written

1— _E 2 3 _E 2 3
€5 8es+O(eS)$as$1+es 86S+O(6S),

1, N n < 5>, 3
4—1—265+O(65)\a5\4+1—265+O(Es). (3.9
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FIG. 2. Plots of the logarithm of the mode energy versus time in FIG. 3. Plots of the logarithm of the mode energy versus time

. . . for times up to the onset of induction for three different valuegof
the early part of the simulation for three different valuesBof(a) _ N - . .
£=0.15,(b) 8=0.3, and(c) B=0.7. (@ B=0.15, (b) B=0.3, and(c) B=0.7. Note the different time

scale in the plots.

0s=0sot BAs1t ﬁ2q32+---, (4.))  where the forcing term F,_; comprises all the
(n—1)th-order terms inside the square brackets on the right-
2 2 ) hand side of Eq(2.7). The forcing term is zero unless the
ws=Q5= Busi—Bpso— ", (4.2 following conditions are met:

where() are the shifted frequencies of the oscillators and Asis 5,505 A 8570, 4.4
are the frequency shifts. In the standard shifted-frequency Qe Gerger=0(n—1) (4.5
perturbation scheme the mode-amplitude expansions are sub- SHsTS ' '

stituted into the equations of motid@.7) and the frequency The resultant equations with initial conditions
expansions are substituted into the linear terms in this equa-

tion. The coefficients of equal powers gfare then equated 011.d0)=2, (4.6)

in the resultant equations. This yieltlsequations of motion

(one for each modeat each orden of the form 0s0(0)=0 V s#11, 4.7
0sj(0)=0 Vs, V=1, (4.8

n
+QZ = — - F -1 4'3 . i
Qs,nt{2s0sn LEl Hs,pls,n p} n-1 4.3 05j(0)=0 Vs, (4.9
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E(s) A1,11,11,19§1,0¢ 0 (4.13
6 ands=11 via
(a) 5 3
. A11,11,11,1811,67 0. (4.149
3 Thus mode 1 is the only additional mode to become excited
at this order. The first-order equations can be written in the
2 form
1 A' e "
-’. R AT "" - 2 _ 9 4
00 100 200 300 400 500 600 Q11,2+ Q101107 | 2H21,1— 1_6")11 cogQyt)
Time
3 4
E(s) g1 cog3044t), (4.15
7
6 . ) 3 3 1 3
(b) < Qi1t QlQl,FEwlwn cogQ,qt) + 16%1°11 cog3Q1t),
A (4.19
3 Js1+Q2095,=0, $=35,7,9,13,15.  (4.17
Equation(4.15 contains a resonance term that would lead to
secular terms in the solution. This secular term is eliminated
by defining the frequency shift
9 4
E(s) 1117 35%11- (4.18
8
No other frequency shifts are defined at this order. It is a
(c) : simple matter to obtain solutions to Eq4.15—(4.17) sub-
6 ject to the initial conditiong4.6)—(4.9). Explicitly,
4 w03, 3 27
ui=—7— (7Q5,- 0 cog Q) + ZQi_ ZQil
2
1 2 1 2
xXcogqqt)+ ZQl_ ZQ“ cog30q;t)
)
_ _ X (Q7-100202,+905) 7, (4.19
FIG. 4. Plots of the mode energy versus time for times extend-
ing beyond the induction time for three different values@f(a) 302
—_ — — i i 11
_/3—0.15,(b) B=0.3, and(c) B=0.7. Note the different time scale Q11,1:—2[005(w11t)+0033w11t)], (4.20
in the plots. 12807,
can be solved explicitly by proceeding order by order up to a gs;=0 for s=3,5,7,9,13,15. (4.2
cutoff order. The frequency shifts are defined so as to re- '
move secular terms from the solutions. At second order, the dual requirement taty o o» is
The zeroth order equations are nonzero andjs gy Qgr iS @ nonzero term of order one only
) permits forcing terms in the equations for modes1,9,11
Qs+ Q205 0=0, (4.10 via
with solutions A111,11,1811,011,811,17 0, (4.22
11,0~ 2 c0$Q19t), (4.1 A111,11, 011,118,170, (4.23
Os0o=0 V s#11. (4.12 Ao 1,11,1f1,1011,A11,0% 0, (4.24
The dual requirement thatsg ¢ g» iS nNonzero and Ag111111811,F11,A1117 0, (4.29

0s'0s 0gr IS @ nonzero term of order zero only permits forc-
ing terms in the first-order equations for modes1 via A1111.11.811,A11,F1,17 0. (4.26
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TABLE I. All the nonvanishing forcing terms in the mode equations of motion for the newly excited mode at each order in the shifted
frequency perturbation treatmefsee Sec. IV.

First order Second order Third order Fourth order Fifth order Sixth order Seventh order
A11,11,11 Ag11,11,1 A1z11,11 Az 111113 A711,113 As511,1,3 As11,93
11,011,110 Q11,011,411 C11,A1,101,1 O11,A11,M133 011,1,1913,3 C11,1,193,4 011,9,203,4
A1311,11,9 Az A711113 A151,1,13 As g9,
O11,11,9,2 01,191,101,1 011,011,834 01,291,1013,3 (g, 209, 209,2
Azi110 Az1100 Ai5109 As113
011,1,109,2 011,929, 01,109, 209,2 (1,191,193,4
A7119 Al511,9,13 As 19,13
01,191,199,2 (11,9,2013,3 01,109, 2013,3
As 11,1313
Q11,813,133

Thus mode 9 is the only additional mode to be excited afThis particular forcing term has a resonance component since
second order.

At each order one new mode becomes excited until at Q%1 0=2+2 cog2Q1t). (4.30
seventh order all odd modes are active. Table | lists all non-
vanishing forcing terms in the equations of motion for the Excluding the case=11, the resonance term is removed by
newly excited mode at each order. The order of appearanagefining
of the remaining modes is mode 13 at third order, mode 3 at
fourth order, mode 7 at fifth order, mode 15 at sixth order, 38
and finally mode 5 at seventh order. This order of appearance /v’«s,lzmAs,s,ll,lla (4.32
of the modes in the shifted-frequency perturbation scheme
matches precisely with the ordering of the modes accordin
to mode energy in the early part of the numerical simulation
(see Fig. 2

In general, the equation of motion for modeat orderj
=|*(s) [wherej*(s) is the order at which mode becomes
excited may be written in the form

Yhere the further factor 3 is obtained from the three permu-
Rations of the forcindEq. (4.30] arising from the sum in Eq.
(2.7). Finally, using Egs.(2.5 and (2.6) with N=11, the
first-order frequency shifts for all modes other than the ini-
tially excited moddsee Eq.(4.18)] are obtained:

j 3wiwi /8  for s#5,11
o+ 0205= 3 posls -t 2 ails.)eogn(sitl, 317\ 3020216 fors=5, (4.33

(4.27)
It is not possible to explicitly obtain higher-order frequency

where they(s,j) are linear combinations of the shifted fre- corrections for all modes without first obtaining explicit so-
quencies() and the number of terms in the sum ovede- lutions to the mode equations at orgér. We have obtained
pends on the mods and the ordejj. In the particular case explicit solutions up to second order. The only additional
j=j*(s), the mode amplitudess ;=0 and the solution of frequency shift to be resolved up to this order is

Eq. (4.27) corresponding to initial conditiongl.6)—(4.9) is

2703, 123080705,
a(s,j* M112= — +
s j* = Qzl(f:).*)[cos v (s,j*)t—cosQt]. 81920}, 512071-512M0307,+46081%,
! s~ V(S
(4.28 ~ 15030503 (434
4 202 4 :
At the next ordelj=j* + 1, the equation of motion for mode 5120, - 51200101, + 46081y,

sis
V. RESONANCE MECHANISM IN INDUCTION: N=15

g i* +QZ i* = e+ Fox. (429)
Gair 1™ sl r1™ sxds,) . It can be readily seen from E4.28 that the dominant

At this order the governing equation always contains a forccontribution to an initially excited mode comes from near
ing term via resonances

Ass11,10s,j*11,811,07 0. (4.30 Qg=v((s,j*). (5.9
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In particular, if Q2—1v2(s,j*)~0O(B") then this reduces Hence the resonance mechanism correctly identifies the
modes to orderj* —n. The importance of the reduction of dominant modes, but it does not explain the exponential
order via near resonances in mode energy sharing wagrowth of energy in these modes that is observed in numeri-
pointed out by Ford and Watef43] in a shifted frequency cal simulations.

analysis of the FPU period. The first reduction of order in the

induction phenomenon occurs for mode 13 at third order. VI. GENERIC RESONANCE MECHANISM
From the entries in Table | it can be seen that one of the IN INDUCTION: ARBITRARY N
contributions to the forcing term in the equation for mode 13 ) , i , )
at third order has frequency In theN=15 partlcle chain the induction phenomenon is
characterized byi) a stable exchange of energy between the
v=20,;,—Qq. (5.2) initially excited mode, mode 11, and the lowest frequency
mode, mode 1, andi) an unstable exchange of energy be-
This term results in a near resonance since tween modes 11, 9, and 13. In the early part of simulations
the energy is ordered,,>E;>Ey>E;3. Induction then
011~ (Qo+Q13)/2. (53 takes place whelt,,~Eq~E3, which is greater than the

energy in all other modes. The initial transfer of energy from

e e esonances e b e s O £fode 1 1o mode 1 1 an inmedite consequence of
pe, P y P election rules. The ordering of mode energies in the early

period in the quartic chain is between moqles 1 and_ 3. Thi art of simulations was explained in the above using the
near resonance occurs at second order in the shifted fre-

. . : mode selection rules and perturbation analysis. The simulta-
quency analysis of the FPU pen@ﬁ] bUt at fourt.h. order N heous growth of energy in modes 9 and 13 as the dominant
the shifted frequency analysis with initial conditions for in-

duction: of. Table | growing modes in the induction process was then explained
P : _ n the basis of a near resonance between modes 11, 9, and
The near resonance resulting in the growth of mode 13 ag

third order also appears in the equation for mode 9 at fourth
order via

In this section we hypothesize generic conditions for in-
duction involving a generic resonance in chains of arbitrary
Ag 1111 18111 11 frz 5% 0. (5.4) Igngth N. The condit'ion thgt the initially excited mod
B o first excites mode 1 is met if
This near resonance would be expected to be dominant in the

: : ; +2(N+1)
induction process over a range gffor which St S So 1= . 6.1)
2011~ Q= Q15=<0(B%). (5.5
) which implies either
Ideally, we would like to be able to calculate the frequency
corrections up to third ordeghere this near resonance first + 2(N+1)+1

appears in the mode equatignbowever, the rapid escala- So -3 (6.2)

tion of terms in the perturbation series has prevented us from

going beyond first order in the frequency corrections exceppr

for modes=11[Eq. (4.34]. At zeroth order the harmonic

frequencies yield ~ 2(N+1)-1
So=——3 (6.3

2011_99_913~0.068, (56)

. . _ . rovided s, is an integer. At second order in a shifted-
whereas the shifted frequencies with first-order correcﬂon?requency perturbation analysis a further mode can then be
yield an exact resonance fg8~0.154. Whether or not

. ; : excited via
higher-order corrections yield an exact resonance or a near

resonance is not vital to the analysis since the solutions for Ac s < 10s oOs. 001 17 0. (6.4)
the mode energies with exact resonances are similar to the 27707707 0T R0

solutions with near resonances over time scales | follows from Egs.(2.5 and(2.6) that
<27/[(2Q11— Qg) —Q43]. Thus, over these times we an-

ticipate that the solution fagj,5(t) will contain a(neay secu- Sot2 if sp=5;

lar term ~t sin({Q,3t) at third order and the solution for S,= . + (6.5
ge(t) will contain a (nea) secular term~t sin(Q3t) at Sp=2 If Sp=5p .

fourth order. The associated mode energies resulting fro : : .

these(nea) resonance terms can grow rapidly in time de-r'@‘t third order modes, can be excited via

pending on the closeness of the near resonance. This reso-

nance analysis suggests that modes 9 and 13 will play a Asg 5059157055 0l 05,27 O- 6.6
dominant role in energy transfers precipitating the inductionIt follows from Egs.(2.5), (2.6), and (6.5) that
phenomenon. In numerical experiments of the induction phe- e '

nomenon in theN=15 particle chain over a range @ So—2 if So=Sq

€[0.1,1] it is observed thatapart from the initially excited 3={ ] . (6.7
mode modes 9 and 13 are always the dominant modes. sot2 if sp=sp .
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TABLE Il. Dominant modes according to the generic resonance mechanism in the induction phenomenon
(see Sec. Vjfor chains of different lengtiN. Also shown is the zeroth-order approximation of the closeness
of the near resonance, E@.11).

N 7 9 10 12 13 15 16 18 19

So 5 7 7 9 9 11 11 13 13

S, 7 5 9 7 11 9 13 11 15

S3 3 9 5 11 7 13 9 15 11

AQ 0.25 0.17 0.14 0.10 0.085 0.068 0.057 0.050 0.042

Sinces, ands; are (odd modes with frequencies closest to frequencies closest to the initially excited mode at second
and on either side of the initially excited modg it is an-  order[Eq. (6.5] and third ordefEq. (6.7)]. The equation of
ticipated that there will be a generic near resonance arisingiotion for modes; at third order will contain a near reso-
from nance term with frequency

205, ~Qs,+ Q. (6.9 205 —Qs,. (6.9
Thus we have generic conditions for induction. Note that™ similar near resonance term with frequency

near resonance terms will be ubiquitous in quartic chains due 20. —Q (6.10
. X - o - s s .
to interactions arising from nonvanishing coefficients of the 0 3

will then appear in the equation of motion for modg at

oo et then thev t il load o | Yourth order. If the near resonance is sufficiently close then
nances are sutticiently close then they too will 1ead 10 1ar9€4s il lead to the growth of modes, ands, resulting in
scale energy sharing. induction

In summary, if a quartic chain dfl particles is initially A . . . . .
L : ; ccording to the generic mechanism for induction de-
excited in modes, according to Eqsi6.2) and(6.3) then this scribed above, induction cannot occur in chains with

¥V'II In turn f|r?t te)x?te :nodte 1(arthf|ri,t orderdm a Sr:j'fted =3n+2 particles (i is any natural numbgrand induction
requency perturbation frea menThe two modes, ands, ... cannot occur in a chain witN<<7. Table Il contains a list of
will subsequently excite the two odd frequency modes with
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FIG. 6. Plots of(a) the logarithm of the mode energy versus
FIG. 5. Plots of the logarithm of the mode energy versus timetime in the early part of a simulation and) the mode energy
for an N= 15 particle chain initially excited in mod@) s,=9 and  versus time over a full simulation for ad=16 particle chain ini-
(b) sp=13, with 3=0.7. tially excited in modesy=11 with =0.7.
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FIG. 7. Plots of(a) the logarithm of the mode energy versus
time in the early part of a simulation angh) the mode energy
versus time over a full simulation for &= 10 particle chain ini-
tially excited in modesy=7 with 8=0.7.

modess,,S,,S; involved in the onset of induction according
to the generic mechanism f¥=7,9, . ..,19. Thequantity
(6.11

AQ= 205~ ws,~ 0,
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FIG. 8. Plots of(a) the logarithm of the mode energy versus
time in the early part of a simulation an@) the mode energy
versus time over a full simulation for =19 particle chain ini-
tially excited in modesy=13 with 3=0.7.

initially excited in mode 7. The ordering,>E;>Eg4>Eg in

the early part of the simulation and the dominance of modes
7, 9, and 5 at the onset of induction are consistent with the
entries in Table Il and the resonance mechanism for induc-
tion. Figure 8 shows induction in a 19-particle chain initially
excited in mode 13. Again, the initial ordering,s>E;

is also listed in Table Il as a zeroth-order measure of the-g,.~E,, and the dominance of modes 13, 15, and 11 at

closeness of the near resonance.

the onset of induction are consistent with the entries in Table

We have carried out extensive numerical simulations ofi| and the resonance mechanism.

the quartic chain with differenN and excited in different

The shortest quartic chain for which we could numerically

initial modes and the results are consistent with the generigbtain induction with the initial conditions above is thi (
mechanism for induction outlined above. Some of the results- 10)-particle chain excited in mode(Fig. 7). In particular,

simulations we have set the nonlinear couplingte0.7 and

the initial conditions are of the forngs(0)=0 and qS(O)
=0 for all modes except mods, Whereqso(0)=2.

excited in mode 7 or theN=7)-particle chain excited in
mode 5. One possible reason for this is that the near reso-
nances involving modes 7, 5, and 9 in the=9)-particle

Figure 5 shows plots of the mode energies in a 15-particl€hain and modes 5, 7, and 3 in theé< 7)-particle chain are

chain initially excited in(a) mode 9 andb) mode 13. The

not sufficiently close. Note that the closeness of the near

characteristic features of induction, an initial quiescent pefésonance decreases with decreadingt least in the zeroth
riod followed by an abrupt transfer of energy to other modesorder approximationTable Il). Another possibility is that

is not seen in either of these simulatidsse further remarks

induction occurs but at much later times in these short

below). Figure 6 shows plots of the mode energies in a 16chains. All of the numerical results that we have reported

particle quartic chain initially excited in mode 11. In the
early part of the simulation the energy is ordefeg>E,

above have been restricted to times less than the time at

which roundoff errors(as evidenced by the appearance of

>E,3>Eg, in agreement with the ordering predicted by the€ven modescontaminate the results. It is possible to elimi-
selection rules and perturbation analysis as summarized ipate the spurious excitation of the even modes by integrating
Table Il. Furthermore, modes 11, 9, and 13 are the dominarthe particle equations of motion under the explicit restriction
modes at the onset of induction in this system, in agreementhat x,=Xy. 1, andX,=Xy+1_n, but this does not elimi-
with the resonance mechanism for induction. Figure 7 showsate the possibility of roundoff errors. It is interesting to note
a plot of the mode energies in a 10-particle quartic chainn this connection that an apparent induction can be observed
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in numerical simulations of the 15-particle chain initially ex- we identified a generic mechanism for induction in quartic
cited in mode 9 forB=1.5 and initial conditiongjs(0)=0 FPU chains. In this generic mechanism an initially excited
andq(0)=0 for all modes exceplo(0)=2. However, this Mmode first excites mode 1 and then excites the two modes

apparent induction occurs as a result of significant growth ofvith frequencies closest to that of the initially excited mode
energy in the Spurious mode 10. When we integrate the San‘{ét second order and third order in the perturbatlon_ analySlS
system but with even modes set to zero no induction is obOne of these modes has frequency less than the initially ex-
served even over much longer times. For the 15-particl€ited mode and the other has frequency greater than the ini-
chain initially excited in mode 9 we do expect widespreadtially excited mode. A near resonance term appears in the
energy sharing fop sufficiently large, but we do not expect €quations for these modes due to the fact that the frequency
this energy sharing to follow the induction pattern of an ini- Of the initially excited mode is essentially an average of the

tially quiescent period followed by abrupt energy sharing. frequencies of these two neighboring modes. If the near reso-
nance is sufficiently close then the energy in the neighboring

VII. SUMMARY AND DISCUSSION modes can become comparable to the initially excited mode
thus triggering induction.

In this paper we have reexamined the induction phenom- The calculations in this study again support the usefulness
enon in quartic Fermi-Pasta-Ulam chains that occurs wheof the shifted-frequency perturbation scheme for studying
an initially excited mode transfers energy apparentlymode energy transfers in FPU chains. There are, however,
abruptly to the other modes of the system after an initiallyseveral questions that we have not been able to answer
quiescent induction time. This phenomenon has been studiegithin this framework. Why is the energy in mode 1 stable
extensively in previous work in the case of anunder the conditions for inductionfit follows from Eq.
(N=15)-particle chain initially excited in mode 11. The (4.19 that at short times the energy in mode 1 does not
simulations of our present study demonstrate that the conclidepend on the perturbation paramegef Why is the energy
sions of the previous workers relating to the mechanism foexchange between modes sometimes periodic and sometimes
induction are not correct. The Mathieu function stability stochastic after the onset of induction? Why do all mode
analysis in previous work that was based on a reduced set @hergiegexcept mode 1 and the initially excited modgow
coupled mode equations was flawed because the reduced ssfonentially in time in the induction phenomenon? Can a
did not include all of the significant mode interactions. stability analysis be carried out on the mode energes-

We carried out a shifted-frequency perturbation analysidiaps along the lines of a Mathieu function analysis general-
of the quartic 15-particle chain with the initial conditions for ized to coupled oscillatoy®n a reduced set of equations that
induction and we found that the order of appearance of théncludes all significant mode interactions?
modes in the perturbation analysis is consistent with the or-
dering of the modes according to the magnitude of their har-
monic energies in the early part of simulations. We also
identified a resonance mechanism to account for the domi- We would like to thank Dr. Simon Watt for useful discus-
nant growing modes in the induction phenomenon. Finallysions.
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